Galois module structure of (ℓ n )th classes of fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontrivial Galois module structure of cyclotomic fields

We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...

متن کامل

Topological centers of the n-th dual of module actions

We study the topological centers of $nth$ dual of Banach $mathcal{A}$-modules and we extend some propositions from Lau and "{U}lger into $n-th$ dual of Banach $mathcal{A}-modules$ where $ngeq 0$ is even number. Let   $mathcal{B}$   be a Banach  $mathcal{A}-bimodule$. By using some new conditions, we show that $ Z^ell_{mathcal{A}^{(n)}}(mathcal{B}^{(n)})=mathcal{B}^{(n)}$ and $ Z^ell_{mathcal{B}...

متن کامل

Galois Module Structure of Galois Cohomology

Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...

متن کامل

Probability of having $n^{th}$-roots and n-centrality of two classes of groups

In this paper, we consider the finitely 2-generated groups $K(s,l)$ and $G_m$ as follows:$$K(s,l)=langle a,b|ab^s=b^la, ba^s=a^lbrangle,\G_m=langle a,b|a^m=b^m=1, {[a,b]}^a=[a,b], {[a,b]}^b=[a,b]rangle$$ and find the explicit formulas for the probability of having nth-roots for them. Also, we investigate integers n for which, these groups are n-central.

متن کامل

A pr 2 00 5 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F . In 1947 Šafarevič initiated the study of Galois groups of maximal pextension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2013

ISSN: 0024-6093

DOI: 10.1112/blms/bdt082